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Abstract Numerical simulations of three of the most severe historical tropical cyclones to affect the
Delaware River Basin (DRB) are used to evaluate a new numerical approach that is a candidate model
for the inland‐coastal compound flood forecast. This study includes simulating interactions of
tides/surges, freshwater streamflows, winds, and atmospheric pressure for the DRB. One‐way coupling
between the hydrologic (National Water Model [NWM]) and the ocean/wave (ADvanced CIRCulation
model/WAVEWATCH III [ADCIRC/WW3]) models for the Delaware river‐estuarine system is
developed. The links between the coastal processes and the NWM are provided by two different
hydraulic and hydrodynamic models: (i) a well‐calibrated public‐domain 1D hydraulic solver model
(Hydrologic Engineering Center's River Analysis System [HEC‐RAS]) and (ii) 1D/2D open‐sourced
hydrodynamic model (D‐Flow Flexible Mesh [D‐Flow FM]). First, the modeling system is tested to
confirm model verification and stability when the system is forced with only tidal forcing. Then, the
relative performance of each modeling approach (NWM/D‐Flow FM/ADCIRC/WW3 and
NWM/HEC‐RAS/ADCIRC/WW3) is evaluated using observational data from Hurricanes Isabel (2003),
Irene (2011), and Sandy (2012). Furthermore, the sensitivity of water level prediction to the
streamflows, different wind products, and bed roughness are examined. Results show that the D‐Flow
FM is generally accurate for water levels: the water levels near the peak of the storms have a skill
ranging from 0.79 to 0.91 with a negligible phase error. Simulations show that water level
predictions depend on an accurate representation of the wind conditions and bottom roughness. The
work shows that hydrodynamic predictions, especially upstream, are highly dependent on the
streamflow discharges.

Plain Language Summary The East Coast of the United States is prone to powerful winter
nor'easters and tropical cyclones. Both weather patterns produce strong winds, large storm tides,
enormous ocean waves, and potentially extreme precipitation. This makes the U.S. East Coast
vulnerable to catastrophic damage and loss of life. The Delaware River Basin is part of the highly
developed and densely populated megalopolis of the northeastern United States. The unique
properties and movement of individual storms and the complexity of the coastal morphology require the
implementation of the most skillful and comprehensive modeling approach for forecasting and
planning purposes. In this paper, the appropriate modeling system is evaluated for the hurricanes
that made landfall along the East Coast of the United States to investigate the compound inland‐coastal
flooding. Numerical results are compared with observational data from National Oceanographic
and Atmospheric Administration (NOAA). In agreement with observations, simulations indicate
that water level estimations depend on a precise representation of both river inflows and elevated
sea levels. The findings of this work show that using the proposed modeling framework has advantages
over existing river hydraulic models, particularly near a coastal plain estuary during storm events.
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1. Introduction

The interactive riverine and coastal processes, especially during short‐term changes like major storms or
under long‐term impacts such as climate change and sea level rise, are responsible for large cultural, eco-
nomic, and biodiversity impacts in such highly populated estuarine systems (Moussa & Bocquillon, 2009;
Neumann et al., 2015; Peduzzi et al., 2012; Zhang et al., 2020).

In river‐estuary transition areas or low‐gradient coastal watersheds, both inland hydrological and coastal
ocean processes significantly interact. A river‐estuary transition zone is subjected to tides, waves, saline
water, freshwater inflow, rainfall, and sediment. River‐bay‐ocean systems are at risk to flooding exposures
from combined influences of river inflows and storm surges produced by tropical cyclones (TCs; i.e., com-
pound flooding) (Santiago‐Collazoa et al., 2019; Zscheischler et al., 2018). Intense rainfall during extreme
storms increases the riverine inflows and, as a result, produces overland flow and floodplain inundation.
North Atlantic TCs are accompanied by strong winds and torrential precipitation capable of generating tre-
mendous storm tide, enormous ocean waves, and large streamflow simultaneously. The culmination of com-
plex interactions of forcing including surges, waves, strong turbulence, freshwater inflows, winds, and
atmospheric pressure produces life‐threatening flooding; catastrophic damage of infrastructure, homes,
and commercial properties; and erosion of the coastlines (Bakhtyar, Orton, et al., 2018; Chang, 2001;
Czajkowski et al., 2013; Di Liberto et al., 2011; Villarini et al., 2014).

The natural ecosystem, coastline's morphology, and water quality are often left in disrepair after the storm's
impact. Besides, the cost of such events is estimated at about $28 billion per year and is expected to rise to $39
billion by 2075. Under extrememeteorological events, intense streamflow and storm surge occur at the same
time or in temporal proximity. Sometimes, sustained precipitation and the combined effect of storm surge
and flood tide obstruct the streamflow towards the bay/delta, which produce a disaster flood. Moreover, it
is expected that the number of severe meteorological events will increase and their compounding influences
will become stronger via sea level rise (Bilskie et al., 2019).

The forecast of flood inundation is vital for emergency action plans, risk assessment, flood insurance rates,
and water resources management. Many of the existing flood inundation models disregard precipitation and
river discharge (Santiago‐Collazoa et al., 2019). As in these models, some important physical processes like
momentum exchange are omitted (Orton et al., 2018), it is vital to simulate the combination of
above‐mentioned flooding mechanisms (i.e., interaction of streamflow and combined effect of storm surge
and flood tide) and determine the effect of each one and their combined impacts on flood forecasts
(Santiago‐Collazoa et al., 2019).

Riverine‐coastal hydrodynamics may be investigated either via field and laboratory experiments or numer-
ical models. Attaining robust data through the laboratory and field measurements in extreme storm events is
difficult and expensive. In addition, progress in numerical methods and computational power increase the
attractiveness of numerical simulation of riverine/bay hydraulics and hydrodynamics (Chen et al., 2015;
Neal et al., 2012). Furthermore, operational and probabilistic flood forecasting systems, which provide ocea-
nographic conditions in nowcast and forecast time, need many simulations per hour (Bakhtyar, Orton,
et al., 2018; Orton et al., 2016). Therefore, the advanced numerical models provide a tool for scientists to
simulate the motions of air and water in the riverine and estuary systems.

The National Weather Service (NWS) is trying to efficiently minimize the flood risks and flood‐induced
losses in life and property. In order to achieve this goal, NWS needs a precise flood modeling framework.
An accurate flood modeling system requires state‐of‐the‐art numerical models, which appropriately con-
sider the significant physical processes that affect the flooded areas (i.e., integrated storm surge/tide, water
levels in rivers and tributaries). For many years, NWS has used 1D hydraulic models to forecast water levels
on main rivers (http://www.nws.noaa.gov/ohd/hrl/hsmb/hydraulics). In coastal plain estuaries where riv-
ers broaden and flow into bays, 1D modeling assumptions can be a limiting factor (Bakhtyar, Maitaria,
et al., 2018, 2019, 2020; Gong et al., 2007). The current kinematic wave hydraulic module in the National
Water Model (NWM) is not able to resolve wind forcing, ocean tide, or baroclinic forcing, which can play
dominant roles in changing total water level in coastal regions, especially during TCs. Additionally, the mul-
tifaceted interactions at tidal, subtidal, and shorter time scales create challenging assessment of riverine/bay
models (Warner et al., 2005). Because of these multiple influences, a complex modeling scheme is necessary
to fully understand and forecast the water behavior in the river‐estuary transition zone. The model should
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provide considerable flexibility in resolving complex geometry/bathymetry/physics for flood forecasting and
water management activities in the coastal‐estuary zone.

Commonly, three main types of numerical models are used for hydrodynamic simulations of major
storm events (Xie et al., 2016): (i) wave models (Bakhtyar, Orton, et al., 2018), (ii) ocean circulation
models (van Heerden et al., 2007), and (iii) coupled wave and ocean models (Deb & Ferreira, 2018;
Dietrich et al., 2013). The most accurate type of these models is the coupled ocean/wave model that
includes the momentum exchange between currents and waves (Donelan et al., 2012). Although some
of the open source ocean models have shown potential for inclusion within the NWM approach, the
well‐established hydrodynamic ADvanced CIRCulation (ADCIRC) model coupled with third‐generation
wave WAVEWATCH III (WW3) model has been broadly used in recent years to simulate storm surge,
tides, and waves. ADCIRC (Luettich et al., 1992) is useful for studying storm impacts and flood forecasting
in coastal zones (Kress et al., 2016; Orton et al., 2015). WW3 is also widely used in offshore and nearshore
applications in high‐resolution numerical domains. New developments in the WW3 model have improved
the model accuracy, robustness, and scalability on various high‐performance computing (HPC) environ-
ments compatible with community‐based coupling infrastructures (NOAA Environmental Modeling
System [NEMS]).

The main objective of this study is to investigate the combined effects of storm tide and riverine stream-
flow on flood/inundation modeling at the transition zone using an advanced ocean/estuarine/hydrologic
modeling approach. There are some approaches to link estuary, ocean, and hydrologic models to create a
river‐estuary‐ocean modeling system: (i) directly linking an ocean model with a hydrologic model; (ii)
using a simplified 1D inland hydraulic model between a hydrologic and ocean model; and (iii) applying
a more robust but more complex hydrodynamic model between a hydrologic and an ocean/wave model
to simulate total water elevation caused by ocean storm tide, wave, freshwater flow, and wind forcing
in both 1D and 2D domains. In the first approach, the inland hydrology model needs to be capable of
receiving coastal‐related signals (i.e., water surface elevation) and propagate it landwards such as back-
water effect. This also requires that the coastal ocean model be able to accurately receive and resolve
freshwater inflow and vertical exchanges in wet and dry parts of its computational domain (i.e., local gen-
erated runoff, evaporation, and infiltration). Most of ocean models cannot adequately simulate stream-
flows in the rivers and tributaries with the temporal and spatial resolution required for this analysis.
Therefore, in this study, the first approach is not considered and the focus is placed on the development
of the latter two approaches.

The one‐way coupling between an ocean/wave model (ADCIRC/WW3) and a hydrologic model (NWM)
under three major storms (Hurricanes Isabel, Irene, and Sandy) is validated by incorporating two
well‐established hydraulic (Hydrologic Engineering Center's River Analysis System [HEC‐RAS]) and hydro-
dynamic (D‐Flow Flexible Mesh [D‐Flow FM]) models. HEC‐RAS is a hydraulic model for water flow
through natural rivers, and D‐Flow FM is a modeling suite for hydrodynamic simulation on unstructured
grids in combined 1D/2D. Either D‐Flow FM or HEC‐RAS can communicate with the NWM and
ADCIRC by passing the output discharge time series from the NWM and water level/velocity time series
from ADCIRC.

The study area here is Delaware Bay, which is one of the largest and most important bays along the U.S.
East Coast. It is also a generalizable example of shallow coastal estuaries (Pareja‐Roman et al., 2019). The
hydrodynamic characteristics in the Delaware Bay are determined by the interaction of the tidal flow from
the Atlantic Ocean and the freshwater flows from the mainstem of the Delaware River and its tributaries
(Dupont, 2019). The results of the simulations conducted in the coupled modeling framework are com-
pared with the available field observations of NOAA Center for Operational Oceanographic Products
and Services (CO‐OPS; https://tidesandcurrents.noaa.gov/). A sensitivity analysis is also carried out to
assess the effects of streamflows and wind, which are the two variables that have a large impact on the
model performance.

The description of the modeling approach is presented in section 2. Section 3 contains the model setup,
model domains, and boundary conditions. Model validation for three major storms and different modeling
approaches as well as sensitivity analysis are presented in section 4. Finally, the summary and conclusions
are provided in section 5.
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2. Description of the Model Couplings Tested

A new 1D/2D coupled modeling approach is introduced to predict total
water levels and flood inundation in the coastal areas of the
CONtinental United States (CONUS) aiming to improve the freshwater
discharge forecasts of the NWM. The one‐way coupling between the
ADCIRC and the NWM at the transition zone between the inland and
coastal zones is provided by riverine‐estuarine models. In this study,
two different riverine‐estuary models are used: (i) the HEC‐RAS hydrau-
lic model and (ii) the D‐Flow FM hydraulic/hydrodynamic model. The
D‐Flow FM is capable of seamlessly integrating 2D physics (e.g., estuaries,
bays) with 1D hydraulics (e.g., rivers, tributaries). The effects of the
wind‐generated surface waves are modeled using the third‐generation
WW3 spectral wave model, which is two‐way coupled with ADCIRC.
Figure 1 shows a schematic representation of the proposed modeling
approach. Summary details of all modeling components are provided in
sections 2.1 and 2.2.

2.1. Riverine‐Estuary Hydrodynamic/Hydraulic Models

The reliability of different 1D/2D hydrodynamic/hydraulic models in the
Delaware River Basin (DRB) for simulating of inland‐coastal compound
flood propagation and inundation/water levels is examined. The perfor-
mance of D‐Flow FM and HEC‐RAS models can be evaluated by compar-
ing observed and corresponding simulated water levels, using different
statistical measures.
2.1.1. Hydrologic Engineering Center's River Analysis System

HEC‐RAS (https://www.hec.usace.army.mil/software/hec-ras) is a public‐domain model that can be used to
performwater flow simulations. This model was developed by the Hydrologic Engineering Center of the U.S.
Army Corps of Engineers (USACE) and solves the dynamic Saint‐Venant equations for unsteady flow (HEC‐
RAS, 2016). HEC‐RAS models the hydraulics of water flow through natural rivers and other channels.
HEC‐RAS can be used to predict the extent of flood and create inundation maps. It may have some numer-
ical instability problems in steep and/or highly dynamic rivers and streams.
2.1.2. D‐Flow FM Model
D‐Flow FM (http://oss.deltares.nl/web/delft3d/d-flow-flexible-mesh) is a new hydrodynamic model that
solves the shallow‐water equations on an unstructured mesh in a coupled 1D/2D fashion. Together with
the curvilinear grids from Delft3D, the unstructured mesh can contain pentagons, triangles, and 1D river
networks altogether in single mesh (D‐Flow FM User manual, 2014). D‐Flow FM is composed of Delft3D
4 and SOBEK 2 hydrodynamic models and contains unstructured grids. D‐Flow FM is a very flexible mesh
in the coastal transition zone and is suitable for tidal, estuarine, riverine, and inundation modeling by using
the wetting‐and‐drying scheme (D‐Flow FM User manual, 2014). The model achieves high performance by
the use of multicore architectures, grid computing clusters, and subgrid methods. D‐Flow FM is an open
source code. A detailed conceptual description of the model and numerical approach was given in the
D‐Flow FM user manual.

2.2. Boundary Conditions and Atmospheric Forcing

In this study, an efficient couple system of a 2D ocean circulationmodel, ADCIRC (Luettich et al., 1992), and
a third‐generation spectral wave model, WAVEWATCH III (Abdolali et al., 2020; WW3DG, 2019), is used to
compute the ocean boundary condition. The radiation stresses from wave calculations are communicated to
the ADCIRC ocean model and used in computing the water level. Flow field is then communicated back
from ADCIRC to WW3. This exchange of data happens interactively (Moghimi et al., 2020). The simulations
are conducted on an unstructured triangular mesh with ~1.8 M node with lowest resolution of ~200 m near
the coast. The atmospheric forcings (wind and pressure) are provided to the system from the Hurricane
Weather Research and Forecasting (HWRF) model. The water level and velocity time series at the offshore
boundary are extracted and imposed to the hydraulic model as the ocean boundary condition (Figure 2).

Figure 1. Diagram of the numerical modeling structure: hydrologic model
(NWM), ocean circulation model (ADCIRC), wave model (WW3), and
hydraulic/hydrodynamic models (HEC‐RAS/D‐Flow FM). All model
configurations and results are predecisional and for official use only.
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The inland boundary conditions at the river and tributaries are time‐varying streamflow discharges that are
computed by the NWM (http://water.noaa.gov/about/nwm). The NWM produces a variety of operational
hydrologic analysis and prediction products for the CONUS (e.g., estimates of river water velocity and flow
discharges for more than 2.7 million river reaches that include both data‐rich and underserved locations).

3. Study Area, Model Setup, and Model Domain

Figure 3b shows the study area and the model domain. The study area covers the Delaware River reach and
its 10 primary tributaries from the upstream boundary (USB) to the Atlantic Coast (Figure 3b). The USB of
the river flow is downstream of Trenton, NJ, where the non‐tidal flows meet tidal flows of the Delaware Bay.
Each tributary is composed of a corridor under the influence of backwater effects from the Delaware River or
Delaware Bay (see Table 1). Generally, the 11 tributaries contribute about 95% of the freshwater into the
Delaware Bay. The Chesapeake and Delaware Canal is not considered in this study. The river discharge pat-
tern in the Delaware River is seasonal. This is primarily from the snow melt in the Catskill and Pocono
mountains. Based on a 27‐year data set, the average discharge at Trenton, NJ, for June–October was
195 m3 s−1, for November–February was 334 m3 s−1, and for March–May was 510 m3 s−1 (Sharp et al., 1986;
Smullen et al., 1983). According to the U.S. Geological Survey (USGS) record at Trenton, NJ, station (https://
waterdata.usgs.gov/usa/nwis/uv?01463500), mean annual discharge range is between 140.93 to
677.91 m3 s−1 from 1913 through 2020. The mean freshwater discharge varied from 330 m3 s−1 at the
upstream to 570m3 s−1 at themouth of the bay. At the head of the tides, the freshwater discharge varies from
34 to 8,500 m3 s−1 during the severe drought and wet periods, respectively (Partheniades, 2009). The ques-
tion that arises is how to determine the minimum length of each tributary that is necessary to capture the
essential physics in the model. This minimum corridor length (1D portion) must be longer than the maxi-
mum possible backwater extents in Table 1 ensuring that the actual spatial extent of flooding due to both
tidal influences and freshwater fluxes is properly computed.

Using geospatial tools, a subset of the NWM river network coinciding with prominent river tributaries is
selected. Next, the NWM hydrologic forecast locations that are collocated with the 11 USB limits of the
tributaries are identified. A complete set of the retrospective streamflow data from the NWM for the
respective named storm events is obtained. This data set forms the lateral boundary conditions for
hydraulic/hydrodynamic models in DRB.

3.1. D‐Flow FM Setup

The D‐Flow FM model uses the unstructured mesh that covers the entire DRB. The mesh covers 250 km of
the lower Delaware River (Figure 3a). It consists of a combination of 2D curvilinear/triangular mesh and a
1D river network including several cross sections. Two coupled 2D/1D setups are used: (i) 2D mesh for the
bay and 1D network just for the main river (Delaware), and using discharge boundary conditions at other
lateral rivers (Figure 3b), (ii) 2D grids for the bay and 1D networks for all tributaries (Figure 3c). The mesh
includes sufficient resolution to represent realistic physics of rivers and the bay. The 2D mesh has 57,872

Figure 2. ADCIRC computational domain (right) and boundary condition for D‐Flow FM (red line in the left panel).
All model configurations and results are predecisional and for official use only.
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elements in total, with mesh element sizes varying from 50 m to 3 km. The mesh is refined in/near the river
channel and gradually coarsens over the floodplains and towards the ocean. The upstream segment of the
river, approximately 120 km, is represented with the 1D river network.

After the mesh is created, elevation data are assigned to each node (Figure 3a). The primary source of the
topo/bathymetric information is the USGS Coastal National Elevation Database (CoNED). The CoNED is
a seamlessly integrated topo/bathymetric database from multiple topographic data sources with adjacent
intertidal topo/bathymetric and offshore bathymetric sources (Danielson et al., 2016). Elevation data of
the nodes located in the ocean were assigned using the ADCIRC bathymetric data set. The
topo/bathymetry values have World Geodetic System (WGS84) as the horizontal datum and geodetic
North American Vertical Datum 1988 (NAVD88) as vertical datum.

Spatially variable Manning's roughness coefficients are initially derived from the multiple studies that have
been done by USACE, USGS, and Federal Emergency Management Agency (FEMA). D‐Flow FM interpo-
lates roughness values during the model initialization process, in order to achieve the smooth transition
of roughness values over the model domain. Some sensitivity studies based on tidal analysis are done in
order to achieve the best roughness configuration.

3.2. HEC‐RAS Setup

The digital terrain model (DTM) is compiled in the form of a triangular irregular network (TIN) for use in
HEC‐RAS model development. The FEMA 500‐year flood coverage plus a buffer zone around it is used to
clip the TIN coverage. Stream cross‐section information is generated using the HEC‐GeoRAS/ArcInfo tools.
Additional data not extracted by the HEC‐GeoRAS/ArcInfo such as detailed channel roughness coefficient
and ineffective areas are later defined in the HEC‐RAS model. The stream network is composed of stream
centerlines for the main stream Delaware River and all its major tributaries (Figure 4). Stream centerlines
identify the connectivity between different streams for flood routing within HEC‐RAS.

The key inputs to HEC‐RASmodel are DRB geometric data, Delaware River floodplain data (length and ele-
vation), the distance between consecutive river cross sections, Manning's roughness coefficient, and slope.
The downstream boundary is located at a nearby ADCIRC point in the mouth of the bay. The USB of
HEC‐RAS is located at the USB of the river (i.e., downstream of Trenton, NJ). Ten internal boundary condi-
tions (coincident with the NWM forecasts at respective tributaries) are also included.

3.3. Coupled Model Setup and Boundary Conditions

The ocean boundary condition for D‐Flow FM is the time series of water elevations/velocities that are calcu-
lated by the two‐way coupled ocean model ADCIRC with the wave model WW3. The inland boundary con-
ditions at the river and tributaries are time‐varying streamflow discharges that are computed by the NWM.
Different wind and pressure reanalysis and hindcast data are applied as surface boundary forcing. The bot-
tom Manning's roughness coefficient is spatially varying.

D‐Flow FM is run with hourly wind and pressure forcings on the unstructured mesh, while combined effect
of storm surge and flood tide (tides/storms) and discharges are imposed as boundary conditions. As such, the
simulations and model validations focus on estuarine and nearshore areas where tidal currents can signifi-
cantly influence the water level, as well as upstream where the river inflow has an influence on water levels.
The simulation period in all model runs is the same as ADCIRC simulation time frame (22, 23, and 14 days
for Hurricanes Isabel, Sandy, and Irene, respectively). A spin‐up period of 10–13 days prior to the storm land-
fall is used to remove initial condition effects.

D‐Flow FM implements a finite volume solver on a staggered grid. The simulations are run on the HPC clus-
ter (a Linux‐based computing system) at NOAA HPC Center (Theia) and personal desktop. In serial mode
(desktop), the model run time per storm and for this domain using one CPU is about 1.5–2.5 h, while in
an HPC parallel environment using eight cores, it takes about 15 min. We note here that D‐Flow FM has
been parallelized and it helps for much faster simulation times.

3.4. Atmospheric Forcing

The atmospheric forcings of the D‐Flow FM simulations during the three named storms are supplied by two
low‐ and one high‐resolution wind/pressure products: (i) the Global Forecast System (GFS; https://www.
ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs), (ii) the Climate Forecast
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System Reanalysis (CFSR; https://rda.ucar.edu/datasets/ds093.1), and (iii) the HWRF (https://www.emc.
ncep.noaa.gov/gc_wmb/vxt/HWRF/index.php) (hourly with three inner nested moving grids with the finest
resolution of 0.02° moving with the hurricane eye). All atmospheric products contain the data for wind speed
components (ms−1) at 10 m above ground and atmospheric pressure (Pa) reduced to mean sea level (MSL).
The domain of interest is confined between 39–41°N and 72–76°W. The three wind products are used to
assess the sensitivity of the modeling system to different atmospheric forcing resolutions and physics and
how these affect the simulations of the total water level. Details about the above wind products are presented
in Table 2. For modeling the Hurricane Isabel and Super Storm Sandy, GFS, CFSR, and HWRF wind pro-
ducts were used, while for Hurricane Irene, we used CFSR and GFS wind products.

3.5. Observations

The calculated water levels are compared with the available field observations of NOAACO‐OPS at different
sites from Atlantic City, NJ, to Newbold, PA. In order to select stations from areas with different dynamics
(in the ocean, inside the bay, upstream the river) based on the availability of data sets, eight stations are
selected for model validation (Figure 5a).

3.6. Tropical Cyclones

Simulations of three major and notable storms that have made landfall in/near the DRB (i.e., Hurricane
Isabel, 2003; Hurricane Irene, 2011; and Super Storm Sandy, 2012) are used to evaluate the one‐way coupled
modeling approach. While physical processes in these areas are influenced by all three storms, each storm
has unique and distinctive characteristics. Hurricane Isabel, a Category 5 major hurricane (according to
NWS), formed on 6 September 2003 and dissipated on 20 September 2003. It made landfall in eastern
North Carolina aroundmid‐day Thursday, 18 September 2003. Hurricane Isabel (2003) is important not only
for its power, but also for its size and the influence it had on the occupants of one of the most inhabited areas
of the United States. Hurricane Irene (2011), a Category 3 major hurricane, is the 12th costliest hurricane in
the U.S. history. It formed on 21 August and dissipated on 30 August 2011. Hurricane Irene is also important
because of the high precipitation and streamflows. Super Storm Sandy, a Category 3 major hurricane, was
the deadliest and most destructive hurricane of the 2012 Atlantic hurricane season. It formed and dissipated
on 22 October 2012 and 2 November 2012, respectively.

Figure 3. (a) Land boundaries, bathymetry, and 2D computational domain for D‐Flow FM model in Delaware Bay, (b) coupled 2D/1D domain for Delaware
Bay (2D: in yellow) and Delaware River (1D: in pink), and (c) coupled 2D/1D domain for Delaware Bay and its related tributaries (1D: in pink). A finer grid was
chosen in the bay area and river near Philadelphia, PA, and Trenton, NJ, leaving a coarser resolution in the outer regions on the ocean side. All model
configurations and results are predecisional and for official use only.
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4. Results and Discussion

Different riverine‐coastal modeling systems (NWM/D‐Flow FM/ADCIRC/WW3 and NWM/HEC‐RAS/
ADCIRC/WW3) are evaluated to confirm that models satisfactorily simulate DRB inland‐coastal compound
flooding during three major storms. Tidal analysis, time series comparisons of water levels at different sta-
tions for various storms, as well as sensitivity analysis of riverine discharges and atmospheric forcing for var-
ious locations and storms are presented.

4.1. Tidal Analysis

First, the Delaware River mainstem extent from upstream to the Atlantic Coast (approximately 480 km) was
selected for the tidal analysis. Five USGS gauge stations (U1 to U5) and eight NOAACO‐OPS (C1 to C8) were
considered in the study (see Figure 5a). Tidal analysis (T‐TIDE, Pawlowicz et al., 2002) was performed on the
water level data for the temporal window from 1 July 2016 to 30 November 2016. During this time frame, the
river was subjected to neither extreme effects of wind nor large freshwater flows. Here, the extent of the tidal
signature upstream was determined. The amplitudes of the significant tidal constituents were considered.
The spatial variability of the dominant constituent, M2, is shown in Figure 5b. Themagnitude of theM2 com-
ponent increases gradually from Delaware Bay (CO‐OPS #8557380, C1) to a maximum value near Trenton,
NJ (CO‐OPS #8548989, C8). As the tide advances upstream from C8, it encounters the fall line near
Trenton‐Morrisvile Toll Bridge on Hwy 1, and at this point, the tidal propagation stops. Therefore, it is
the proper location for transitioning from the 2D domain to the 1D network.

Subsequently, the D‐Flow FMmodel was verified to test stability and general performance when it is forced
with only tidal components. The D‐Flow FM model was run for a 1‐year period using known astronomical
tidal components as the downstream boundary condition and minimal flow of 10 m3 s−1 for the USB condi-
tion. For tidal calibration, the ADCIRCWestern North Atlantic Tidal Database, the Eastcoast 2001 database,
was used to extract tidal constituents. The Eastcoast 2001 database describes the calculated phase and ampli-
tude for different tidal constituents (i.e., M2, S2, N2, K2, O1, K1, Q1, M4, and M6) (Mukai et al., 2002).

The ability of D‐Flow FM to reproduce tides at the NOAA CO‐OPS stations was evaluated using the auto-
mated constituent selection algorithm, T‐TIDE. Using T‐TIDE, the harmonic constituents were added, giv-
ing the total tidal variation at a particular coastal location independent of the effects of wind, freshwater
flows, and other deviations from the pure astronomical tide. In addition, a 95% confidence interval for the
estimated tidal parameters was generated through non‐linear mapping. The computed constituents were
then compared with observed constituents at the collocated NOAA CO‐OPS locations (see Figure 5a).

Then, some sensitivity studies based on tidal analysis were done in order to achieve the best roughness
configuration. To obtain and fine‐tune the acceptable roughness values, two factors were considered:
(i) physical processes that cause energy losses such as turbulence and river meandering and (ii) deepening
of the mainstem by USACE to ensure safe ship transit. Deeper channels have lower flow resistance/
roughness than the rest of the river. Spatially variable Manning's roughness coefficients were initially
derived based on land use and land cover data (Figure 5c) from the multiple studies that have been done

Table 1
Minimum Extent of the Backwater Effects in the DRB Tributaries

Tributary name Extent of backwater from Delaware River Basin

Delaware mainstem 246 km from the Cape May in the Atlantic Ocean
Rancocas Creek 21 km upstream, at the confluence of Mill Rage Creek and North Branch Rancocas
Crosswicks Creek 11 km upstream, near Main St./Groveville Rd., Hamilton Township, NJ
Leipsic River 26 km approximately upstream, by Garrison Lake
St. Jones River 35 km, up to the Silver Lake
Schuylkill River 8 km upstream
Christina River 12 km upstream, about 5 km from the Wilmington, DE, city limits
Brandywine Creek 5 km upstream of confluence with Christina River, ends at the dam (39.75, −75.55)
Alloways Creek 11 km upstream, at Salem‐Hancocks Bridge Rd., NJ
Maurice River 39 km upstream, at Union Lake Dam
Cohansey River 24 km upstream, at Sunset Lake

Note. All model configurations and results are predecisional and for official use only.
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for this area. We used available documentations from the USGS, FEMA, USACE, National Land Cover
Database (NLCD), NHDPlus HR, and so forth to establish baseline roughness layer (Figure 5d) and
determine the acceptable range of n values (Manning's roughness). The study area was divided into three
zones: (1) the area from the ocean boundary to the widening of the mainstem (near Marcus Hook), (2)
narrow section in the upper riverine zone, and (3) the area between zones (1) and (2). The fine‐tuning
started from the ocean boundary at the river mouth towards the transition zone (zone 1 of Figure 5d).
According to tidal analysis, and in order to capture the most accurate tidal amplitudes and tidal phases
for different stations in this zone, the roughness values were modified. Then, we started from very
upstream (near Trenton) towards the bay and again modified the roughness in order to obtain the best
tidal constituents. Finally, the spatial distributions of roughness in zone (3) were determined (Figure 5d).
Therefore, multiple roughness values were specified along the river and the lateral cross sections.
D‐Flow FM interpolates roughness values during the model initialization process, in order to achieve the
smooth transition of roughness values over the model domain. In subsequent modeling efforts, no
attempt was made to recalibrate roughness values for changes in flow.

Figure 6 shows the harmonic constituents of tidal amplitudes and tidal phases for different stations in the
DRB using the best acceptable roughness values. Clearly, the D‐Flow FM accurately captures the character-
istics of tidal dynamics. Comparison of model outcomes and measurements show strong correlations at all
locations. The small mismatch between computed and observed components is an artifact of non‐tidal or
residual “noise” in the data. The “true” values are within the confidence limits. Based on the verified model
setup and fine‐tuned roughness values, model validation is presented in the following section.

4.2. Model Validation for Three Extreme Storms and Different Riverine Models

In this section, the model results (i.e., detailed water level time series) are compared with field measure-
ments of three major storms (i.e., Hurricanes Sandy, Isabel, and Irene). Table 3 shows the required input
data for both models. HEC‐RAS does not use flow velocity and atmospheric forcing.

Figure 4. Computational domain and cross sections for 1D HEC‐RAS model in Delaware Bay and its tributaries. All
model configurations and results are predecisional and for official use only.
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4.2.1. Super Storm Sandy (2012)
Super Storm Sandy was an extraordinary TC in the New Jersey/New York area due to its large size,
hurricane‐strength winds, resulting large waves, and record‐breaking flood height (Orton et al., 2016).
The results of two different modeling approaches (NWM/D‐Flow FM/ADCIRC/WW3 and NWM/HEC‐
RAS/ADCIRC/WW3) for simulating this hurricane are presented and compared.
D‐Flow FM Model
The total simulation period was 25 days including the spin‐up period of 13 days prior to the storm landfall
that was used to remove initial condition effects beginning on 9 October 2012. Then, the storm simulation
period was 12 days beginning on 22 October 2012. After developing D‐Flow FM model with best available
grid setup/size and wind product, roughness coefficient was the most important calibration parameter
affecting the calculation of surface elevation and velocity distribution.

Figure 7 depicts the geographic distribution of modeled atmospheric pressure before (panels a and d), near
(panels b and e), and after (panels c and f) the time of landfall using ADCIRC (in Atlantic Ocean) and
D‐Flow FM model (in Delaware Bay). The HWRF wind forces both ADCIRC and D‐Flow FM models.
The wind velocities and air pressures reach their maxima and minima, respectively, near the storm center.
The maximum wind speed is continuously present in the area near the storm center where the strongest
atmospheric pressure gradient occurs. The air pressure in the Delaware Bay/River reaches its minima near
the time of landfall on 30 October 2012 (955 hPa at the center of storm). The distributions of hydrodynamic
characteristics during Hurricane Sandy have a complex pattern around the rotational storm center due to
the multidirectional wind field spiraling around the moving storm.

Figure 8 shows the comparison of numerical results with observations for two stations in the upstream of the
Delaware River (i.e., Newbold, PA, and Burlington, NJ) and two stations inside the bay (i.e., Ship John Shoal,
NJ, and Marcus Hook, PA). The top panels of Figure 8 show comparisons of the NWM/D‐Flow FM/
ADCIRC/WW3 modeling system's (see Figure 3b) results and field data for water level. In addition,
Table 4 gives statistical measures (i.e., bias, R, root mean square error [RMSE], and skill) of observational
and numerical results for Super Storm Sandy at four different stations. The equations for these measures
are (Willmott, 1981):

R ¼ 1
Nm − 1

∑Nm
k¼1

Sk − �Sm
σs

� �
Ok − Om

σO

� �
; (1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nm

∑
Nm

k¼1
Sk − Okð Þ2

s
(2)

Table 2
Different Wind Products

Low‐resolution wind products

Global Forecast System (GFS) Climate Forecast System Reanalysis (CFSR)
Spatial resolution: 1.0° × 1.0° (~80 × 80 km)a and
0.5° × 0.5° (~40 × 40 km)b

Spatial resolution: 0.5° × 0.5° (~40 × 40 km)

Temporal resolution: hourly Temporal resolution: hourly
Data format: GRIB1/GRIB2 Data format: GRIB2/NetCDF

High‐resolution wind products

Hurricane Weather Research and Forecasting (HWRF)
Spatial resolution: 0.02° × 0.02° (~1.6 × 1.6 km)
Temporal resolution: hourly
Data format: NetCDF

Note. All model configurations and results are predecisional and for official use only.
aFor Hurricane Isabel. bFor Hurricanes Irene and Sandy.
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Figure 5. (a) USGS gauge (U1 to U5) and NOAA CO‐OPS (C1 to C8) stations. CO‐OPS stations are selected for model validation, (b) spatial variability of the
dominant tidal constituent, M2, in DRB. %Ampt. Diff in panel (b) computes the fraction of amplitude at each location to the amplitude at the river mouth
(C1). (c) Land cover map and (d) tuning strategy of the spatially dependent roughness values. All model configurations and results are predecisional and for
official use only.
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skill ¼ 1 −
∑
Nm

k¼1
Sk − Okj j2

∑
Nm

k¼1
Sk − Om

�� ��þ Ok − Om

�� ��� �2; (3)

Figure 6. Harmonic constituents of tidal amplitudes (top) and tidal phases (bottom) for different stations. All model configurations and results are predecisional
and for official use only.
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bias ¼ 1
Nm

∑
Nm

k¼1
Sk − Okð Þ (4)

where Ok and Om are the observational values and observational mean

values; Sk and Sm are the simulated values and simulated mean values;
Nm is the number of observations; and σS and σO are the standard
deviations of simulated and observational values, respectively. Perfect
agreement gives a skill and R of 1 (−1 ≤ R ≤ 1 and 0 ≤ skill ≤ 1).

In this study, the combined effects of river flow, tide, wind, and wave on
total water levels were investigated. Furthermore, one of the main goals
is to achieve accurate water level from the compound flooding via an
accurate numerical framework under different weather conditions such
as stormy and normal condition. In addition, lots of the peak water level
events do not coincide with hurricane direct impact period. Therefore,
simulation times before and after the direct impact of the hurricane were

included in calculations of statistical measures, so that we can investigate the model's capability to produce
total water levels based on all forcings available. As illustrated in Figure 8 and Table 4, the model results and
field observations agree qualitatively. The temporal pattern of variation in water level is well predicted (with
most R ranging from 0.92 to 0.97 and skill ranging from 0.82 to 0.85), which provides confidence for this
coupled model setup. The measured phase and amplitude time series are well reproduced by the model.
Themodel simulations during the peak of extreme storms are important for flood investigations. The present
modeling approach is powerful for this aspect. The small discrepancies between modeled and observed
values may be due to errors in the wind product, Manning's roughness coefficient, or topo/bathymetry.

The middle panels of Figure 8, as well as Table 4, show the comparisons of the NWM/D‐Flow FM/ADCIRC/
WW3 model results and field data for water level for 2D/1D/All‐Rivers set up (according to Figure 3b). As
stated in Table 4, both 2D and 1D setups have reasonable results with marginally better results for
2D/1D/All‐Rivers. According to the 2D/1D/All‐Rivers (Figure 3c) simulations, skill and R are larger and
RMSE is lower than those of the 2D/1D/Delaware (Figure 3b), especially for upstream stations. This reflects
a better ability of the 2D/1D/All‐Rivers model than 2D/1D/Delaware to simulate the hydrodynamic
characteristics.

As the ADCIRC mesh enters the bay (Figure 2), the ADCIRC outcomes in the overlapped area were evalu-
ated and compared with the D‐Flow FM ones. Figure 9 depicts the water level prediction using ADCRIC
model compared to the NOAA‐observed data during Super Storm Sandy (2012). Table 4 and Figures 8 and
9 show that the accuracy of D‐Flow FMmodels is greater than that of the ADCIRC especially in the overland
area, with smaller values for the RMSE, while coefficients of determination and skill are closer to unity. The
main D‐Flow FM strength above ADCIRC and some of the well‐known hydrodynamic/ocean circulation
models (e.g., Regional Oceanic Modeling System [ROMS] and The Unstructured Grid Finite Volume
Community Ocean Model [FVCOM]) is the ability to blend 1D computational domain with 2D and 3D
within one modeling framework.

HEC‐RAS Model
In order to compare the results of different riverine models, the results of NWM/HEC‐RAS/ADCIRC/WW3
are presented in this section. The model is first configured and debugged using steady flow computations.
The steady flow runs enable us to see potential structural problems in the model at particular flows. For
steady flow modeling, USB conditions are input as discharges from the 10‐, 25‐, 100‐, and 500‐year recur-
rence interval storm events. The geometric information was adjusted in order to obtain a more robust
hydraulic model.

The adjusted HEC‐RAS model is then applied to the unsteady state simulation using the NWM forecast dis-
charge as the upstream and lateral boundary conditions. Calibrated water elevation data are obtained from
the NOAACO‐OPS. There are seven intermediate CO‐OPS stations with stage information. If the initial runs
do not closely agree with the observed data at the above‐mentioned locations, one of the HEC‐RAS para-
meters is modified within reasonable values of the parameter. A new run is conducted, and the results are
again compared to the known data. This process is continued until the calibration is within a reasonable

Table 3
Required Input Forcings by Models and the Adopted Data Sets

Source Input Remark

NWM Streamflow (m3 s−1) Time series
ADCIRC Water level (m) Time series
ADCIRC Flow velocities (ms−1)a Time series
USACE, USGS,
FEMA

Manning's roughness
coefficients

Spatially variable

CoNED Topo/bathymetric
(WGS84—mean sea level)

Spatially variable

CFSR, GFS, HWRF Atmospheric forcingsa Temporal and
spatially variable

Note. All model configurations and results are predecisional and for official
use only.
aHEC‐RAS does not use flow velocity and atmospheric forcing.
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margin of error. After developing HEC‐RAS model with best available river cross section, Manning's
roughness was found to be the most important parameter for calibration.

To evaluate the performance of the HEC‐RASmodel, the same criteria as for the D‐Flow FMmodel are used.
Comparison between simulated and observed water levels at various stations for Super Storm Sandy using
HEC‐RAS is presented in the lowest panels of Figure 8. Simulation results show that peak water level pre-
dictions are generally in good agreement; however, time of occurrence is not well predicted.

Table 4 provides the statistics for model‐observation comparisons for both the D‐Flow FM and HEC‐RAS
models. Table 4 illustrates that the water levels can be calculated reasonably well using the D‐Flow FM
model as compared to HEC‐RAS. In addition, the accuracy of D‐Flow FM models is greater than that of
the HEC‐RAS, with smaller values for the RMSE, while coefficients of determination and skill are closer

Figure 7. Snapshots of geographic distribution of atmospheric pressure using ADCIRC (top) and D‐Flow FM (bottom) during Super Storm Sandy (2012): (a and d)
before, (b and e) near, and (c and f) after the time of landfall. All model configurations and results are predecisional and for official use only.
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Figure 8. Water level prediction compared to the NOAA observed data during Super Storm Sandy, 2012. Top panels: D‐Flow FM (Figure 3a, Delaware), middle
panels: D‐Flow FM (Figure 3b, All‐Rivers), and lowest panels: HEC‐RAS. All model configurations and results are predecisional and for official use only.
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to unity. It is worth mentioning that although the HEC‐RAS model has smaller bias values for downstream
stations (e.g., Ship John Shoal, NJ, andMarcus Hook, PA) than those of for D‐Flow FM, it does not mean that
HEC‐RAS is superior. Unbiased models are only superior to those with higher bias if the unbiased models
also have superior precision and overall smaller variability. Generally, biased models have smaller total
error than unbiased models. As bias is the average difference between the simulated and the observed
values, clearly, it would not be the only measure for model effectiveness. Therefore, various criteria must
be considered for a model to be designated superior to another. Furthermore, the HEC‐RAS did not
simulate tide well before and after hurricane made landfall (when water levels were mostly tidal),
indicating that this model lacks the capability to be a good storm surge or tidal model. Based upon these
results (Figure 8 and Table 4), we may conclude that D‐Flow FM is the better model. The improvement in
the D‐Flow FM over the HEC‐RAS may be due to the wind‐modeling capability used in the former, which
might be crucial for the estuarine hydrodynamic simulation under extreme storms. Additionally,
HEC‐RAS did not perform well due to model's inability to simulate tide accurately. Mashriqui et al. (2014)
reached a similar conclusion from their studies of estuarine river reach of the Potomac River.

In order to provide floodplain mapping, water surface profile data are exported from HEC‐RAS simulations
and processed by the HEC‐GeoRAS. The HEC‐GeoRAS is a set of procedures, tools, and utilities in the
HEC‐RAS for processing geospatial data. Next, the D‐Flow outputs were used to calculate inundation extent
over the terrain. D‐Flow water surface elevation outputs were interpolated and extrapolated to generate a
continuous water surface elevation profile. The water surface elevation profile was then subtracted by a
10‐m digital elevation model with the positive values depicting inundation extent.

Figure 10 depicts the inundation map (using both HEC‐RAS and D‐Flow FM models) that shows the areal
extent of the flooding and the resulting water depth at each location. The inset in Figure 10 presents a snap-
shot of the simulated flooding along the Rancocas tributary, which shows the propagation of ocean forcing
in the lateral rivers' streamflows. The Delaware Bay system is a riverine‐estuarine transition zone where the
water elevation is greatly influenced by the freshwater component, oceanic tides, and atmospheric forcings.
During extreme events, these multiple influences are all important. Despite the advantages of the HEC‐RAS
implementation in normal events, it underpredicts flooding extents during extreme events, such as Super
Storm Sandy (2012), because it lacks a wind forcing term in its momentum equation, which is evident in
Figure 10a. The wind forcing term has been included in the D‐Flow FM formulation (see Figure 10b) result-
ing in the larger flood inundation extent that matches high water marks. These simulation results suggest
that implementing 1D is necessary because it provides vital water information in the dense urban corridors
along the tributary during high‐impact events.
4.2.2. Hurricane Isabel (2003)
Hurricane Isabel (2003) will be recalled because of its intensity, size, and impacted areas. Isabel was
the most expensive storm to hit the U.S. coasts in 2003 (Preller et al., 2003). Extreme rainfall from the
storm occurred in the East Coast. According to NWS reports, this rain caused flash floods over several
tributaries and rivers. As in the previous section, two different modeling systems (i.e., NWM/D‐Flow
FM/ADCICR/WW3 and NWM/HEC‐RAS/ADCIRC/WW3) are validated using the observed time series
data at different stations in DRB.

Table 4
Statistics for Hurricane Sandy (2012) Water Levels at Different Stations and for Different 2D/1D Model Setups

Stations

D‐Flow FM model

HEC‐RAS model2D/1D/Delaware River (Figure 3b) 2D/1D/All tributaries (Figure 3c)

Bias (m) RMSE (m) R Skill Bias (m) RMSE (m) R Skill Bias (m) RMSE (m) R Skill

Ship John shoal, NJ −0.2041 0.2368 0.9836 0.8294 −0.2053 0.2358 0.9842 0.8683 −0.1431 0.3047 0.9189 0.7920
Marcus Hook, PA −0.1461 0.2216 0.9619 0.8811 −0.1283 0.2276 0.9691 0.8799 −0.0730 0.3603 0.8681 0.6910
Burlington, NJ −0.121 0.2855 0.9578 0.8846 −0.1769 0.2691 0.9618 0.8907 0.0533 0.4517 0.8620 0.6840
Newbold, PA −0.1079 0.3194 0.9593 0.8833 −0.0989 0.2789 0.9627 0.8985 0.0796 0.5271 0.8271 0.6310

Note. All model configurations and results are predecisional and for official use only. Boldface indicates best results.
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D‐Flow FM Model
The total simulation period was 25 days including the spin‐up period of 12 days prior to the storm landfall
beginning on 29 August 2003. Then, the storm simulation period was 13 days beginning on 10 September
2003. Figure 11 illustrates the water level prediction compared to the NOAA observed data during
Hurricane Isabel (2003). Temporal variations of observational and predicted water levels at various stations
in the DRB (2D/1D/Delaware) are shown in upper panels of Figure 11. Table 5 gives statistics for water
levels. The model skill in all of the top panels is higher than 0.84, the overall magnitude and trend of the
simulated water level time series match with observations, and inconsistencies are mostly small. It can be
seen that the RMSE between the measured and predicted water levels are increased for stations farther
upstream. In addition, the model overpredicted the water levels for Ship John Shoal (NJ), Burlington (NJ),
and Newbold (NJ) (bias ¼ 0.02, 0.12, 0.10 m, respectively) and underpredicted the water level for Marcus
Hook, PA (bias ¼ −0.015 m). The higher RMSE values for upstream stations may be due to the fact that
in the narrower and shallower part of the river, different motions with various time scales and physics exist.
The disagreement between modeled and observed water levels could also be related to the accuracy of wind
and streamflow inputs, error in roughness estimation, or observations.

The middle panels in Figure 11 and Table 5 show the comparisons of the NWM/D‐Flow FM/ADCIRC/WW3
model results and field data for water level for Hurricane Isabel (2003), for 2D/1D/All‐Rivers set up (accord-
ing to Figure 3b). Water level results have a typical bias around−0.02 to 0.12 m and skill ranging from 0.88 to

Figure 9. Water level prediction compared to the NOAA observed data during Super Storm Sandy (2012) for (a) Newbold, PA, and (b) Burlington, NJ. All model
configurations and results are predecisional and for official use only.
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0.93 inside the bay and in upstream stations. Albeit some differences can be seen between observations and
numerical simulations, the model predictions are generally very good. Water level simulations were mostly
accurate near the peak of each storm. Furthermore, for most of the stations, the model produces an overes-
timation of water level. According to Table 5, both 2D and 1D setups have reasonable results withmarginally
better results for 2D/1D/All‐Rivers. For the 2D/1D/All‐Rivers (Figure 3c) simulations, skill and R are higher,
and bias and RMSE are lower than those of the 2D/1D/Delaware (Figure 3b), especially for upstream sta-
tions. This confirms a better ability of the 2D/1D/All‐Rivers model to simulate the hydrodynamic character-
istics than 2D/1D/Delaware. This modeling architecture (2D/1D/All‐Rivers) promotes sufficient dynamic
information exchange between the river and estuary and hence realistically addresses a wider range of phy-
sical processes.
HEC‐RAS Model
Comparison between simulated and observed water levels at various stations for Hurricane Isabel using
HEC‐RAS is presented in the bottom panels of Figure 11. Simulation results show that peak water level pre-
dictions are generally in good agreement; however, the time of occurrence is not well predicted.

Table 5 shows the statistics of observational data and numerical results for D‐Flow FM and HEC‐RAS mod-
els over the different regions of the domain (in the bay and upstream of the river). The results show good
temporal correlation with the measured data for D‐Flow FM and confirm that D‐Flow FM is evidently the
better model for water level estimation in the bay. This indicates that the model can be used as a better tool
to predict future flooding duringmajor storms. Comparison of the calculated statistical values shows that the
accuracy of the D‐Flow FM model is better than that of the HEC‐RAS model; the RMSE of the water levels
using D‐Flow FM is less than 50% of that using HEC‐RAS. In addition, by moving upstream, the differences
between the two models are increased, which shows the ability of D‐Flow FM to capture the physics of the
rivers both near and far from the coasts.

The superiority of the D‐Flow FM over the HEC‐RAS model may be related to the exclusion of atmospheric
components from the simulation, which is crucial for its performance in resolving the water movement dur-
ing the storms near the coastal areas. Another possible reason may be other simplifications to the flow equa-
tion, which render the HEC‐RAS less suitable for the estuarine‐riverine system. Furthermore, HEC‐RAS
cannot accurately predict the storm surge and tide in areas like the bay and its tributaries. Figure 11 shows
that when the water levels were mostly tidal (before and after the hurricane landfall), HEC‐RAS‐simulated
tide was small in amplitude and out of phase.

4.2.3. Hurricane Irene (2011)
Although Hurricane Irene's maximum intensity did not go above Category 3, it was a very large storm. Due
to the scale of its impact on people and property, Hurricane Irene (2011) has been the subject of earlier stu-
dies (Mooney et al., 2019; Yablonsky et al., 2015) for regional climate modeling framework. Hurricane Irene
(2011) caused extensive and significant impacts such as severe flooding, widespread wind damage, and
power outages along the U.S. East Coast (Klausmann, 2014). Hurricane Irene had a high moisture content
that carried very heavy rainfall and streamflow rates to the U.S. East Coast.

The total simulation period was 15 days including the spin‐up period of 7 days prior to the storm landfall
beginning on 14 August 2011. Then, the storm simulation period was 8 days beginning on 21 August
2011. For Hurricane Irene, the high‐resolutionHWRF data for ADCIRC/WW3 simulations are not available.
Therefore, wind and pressure fields for ADCIRC/WW3 model are produced based on a parametric wind
model (Holland, 1980), which calculated barometric pressure andwind stress according to best‐track estima-
tion from National Hurricane Center (NHC).

Comparison between simulated and observed water levels at various stations for Hurricane Irene (2011)
using D‐Flow FM and HEC‐RAS is presented in upper and lower panels of Figure 12, respectively. As can
be seen from Figure 12, model results during the storm are generally reasonable, while after the storm peak,
they are less accurate. Even though some differences can be seen between observations and numerical simu-
lations, skills were usually higher than 0.80. As measured by skill, the water level results are less accurate
than the results for other storms (Hurricanes Isabel and Sandy), likely due a more simplified wind product
that does not capture the full physics. Statistical measures (Table 6) show that the model is moderately accu-
rate in computing values of water levels but less accurate in capturing the variability (measured by skill).
Figure 12 shows that by moving upstream, the capability of HEC‐RAS decreases drastically. Furthermore,
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it does not show good temporal correlation with the measured data. Comparisons of the upper and lower
panels in Figure 12, in addition to Table 6, show that the D‐Flow FM is more appropriate for water level
predictions in Delaware Bay than the HEC‐RAS.

HEC‐RAS is not a parallel model and is not able to resolve wind forcing and ocean tide, which can play a
dominant role in changing total water level in coastal regions. Therefore, D‐Flow FMwould be a better can-
didate for riverine‐coastal coupling. In addition, D‐Flow FM has parallel computation capabilities and the
potential for inclusion within the NWM approach. D‐Flow FM can be implemented for a single river, estu-
ary, or a coastal zone with ocean tide, freshwater, and wind forcing in both 1D and 2D domains.

4.3. Sensitivity Analysis of Atmospheric Products and Streamflows

Based upon the results for the three extreme storms in the previous sections, we concluded that D‐Flow FM
is superior to HEC‐RAS. Therefore, in the rest of the paper, the former model is considered. In this section,
the wind and streamflow impacts on water level are investigated.
4.3.1. Atmospheric Effects on Water Level
D‐Flow FM is highly flexible and directly handles ASCII and NetCDFmeteorological input formats allowing
the use of different sources of meteorological data. Here, D‐Flow FM is driven by three different wind pro-
ducts as discussed in section 3.4 and presented in Table 2 (i.e., GFS, CFSR, and HWRF). The quality of the
predicted water levels, especially under the influence of significant wind variations, depends greatly on the
quality and accuracy of the atmospheric forcing fields. The uncertainties introduced by atmospheric predic-
tion models include errors related to the modeling of the physical processes, the spatial resolution, and the
quality of the initial conditions (Krzysztofowicz, 2001).

Figure 10. Inundation map and water depth using HEC‐RAS (left) and D‐Flow FM (right) during Super Storm Sandy (2012) for Delaware Bay and Rancocas
tributary (upper left corner). White lines are the riverbanks that show the flooded areas. All model configurations and results are predecisional and for
official use only.
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Figure 11. Water level prediction compared to the NOAA observed data during Hurricane Isabel (2003). Top panels: D‐Flow FM (Figure 3a, Delaware), middle
panels: D‐Flow FM (Figure 3b, All‐Rivers), and lowest panels: HEC‐RAS. All model configurations and results are predecisional and for official use only.
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In order to drive D‐Flow FM with the best available wind forcing, sensitivity tests are conducted to deter-
mine the relative importance of the spatial and temporal resolution of the wind products on the model pre-
dictions. Figure 13 displays the comparison between the modeled wind speed and the observations for three
different wind products for Super Storm Sandy (2012) and for the CO‐OPS observation station Ship John
Shoal, NJ, located at the mouth of Delaware River. The results show that among the three wind products,
HWRF produces the best representation of the observations. From the three products, HWRF best coincides
with the observations, especially during the passage of the storm. The other two low‐resolution products cap-
ture the wind trend reasonably well, but do not capture the wind variations (peaks) during the passage of the
storm as well as HWRF.

Figure 14 depicts the comparisons between modeled water level predictions and NOAA observed data for
different wind forcing products during Hurricane Sandy (2012), while Table 7 presents statistics for the pre-
dicted water levels during the Sandy simulations using different wind forcing products. Figure 14 and
Table 7 show that HWRF is superior to GFS and CFSR for water level prediction during extreme storms.
4.3.2. Streamflow Effects on Water Level
Delaware estuary is a partially mixed estuary with salinity intrusion‐controlled shoaling. The estuary length
is 214 km (Partheniades, 2009). In order to examine the variations in simulated discharge along the
river/bay, D‐Flow FM is forced with inflow times series from the NWM retrospective model during the
storm. The NWM is used to route the flood and determine expected flow hydrographs at the point of interest
(11 available tributaries).

To see the influences of streamflow and oceanic fluctuations on the water levels, the cross‐section discharge
at different locations in both 1D and 2D sections during Hurricane Isabel (2003) was computed (Figure 15).
Importantly, the shape and timing of the cross‐section discharge at different locations in 1D network (#2 to
#4) are accurately simulated with nearly identical characteristics as the observed hydrographs, as illustrated
in location (#1). From location (#3) towards the bay, the effects of ocean forcing on the streamflow can be
seen. Specifically, from location (#4), some negative values that represent the effects of backwater in the
river are visible. In location (#7), the water level and discharge are determined primarily by oceanic
fluctuations.

These results suggest that total water depth from Trenton, NJ, to Marcus Hook, PA (#3 to #7), is determined
by the interaction of the tidal flow from the Atlantic Ocean and the freshwater flows from the mainstem
Delaware River and its tributaries. Downstream of Marcus Hook, PA (#7), the controlling factor for total
water level is the oceanic forcing and associated meteorological conditions. Generally, the tidal flow is 300
times greater than the freshwater flow. Lastly, water depth upstream of Trenton, NJ (#1 to #3), is dependent
on freshwater flow only.

In this study, salinity field was not computed by the model. A long‐term analysis of mean axial salinity dis-
tribution and Delaware River discharge indicates that Delaware is a weakly stratified estuary with a typical
vertical salinity variation of only 1 psu. In addition, the response of salinity to Delaware River discharge is
weak, more enhanced during flood tide relative to ebb tide. The weak salinity response reduction with fresh-
water is due to the action of vertical shear flow dispersion in a tidally stirred regime and the action of lateral
shear coupled to strong lateral salinity gradients which are driven by the lateral flows governed by the

Table 5
Statistics for Hurricane Isabel (2003) Water Levels at Different Stations and for Different 2D/1D Model Setups

Stations

D‐Flow FM model

HEC‐RAS model2D/1D/Delaware River (Figure 3b) 2D/1D/All tributaries (Figure 3c)

Bias (m) RMSE (m) R Skill Bias (m) RMSE (m) R Skill Bias (m) RMSE (m) R Skill

Ship John Shoal, NJ 0.0231 0.1553 0.9679 0.9341 0.0230 0.1539 0.9687 0.9353 −0.0351 0.3971 0.7801 0.6054
Marcus Hook, PA −0.0155 0.1962 0.9507 0.9028 −0.0233 0.1980 0.9504 0.9010 −0.0055 0.4088 0.7594 0.5606
Burlington, NJ 0.1234 0.2899 0.9436 0.8469 0.1202 0.2572 0.9532 0.8794 0.1504 0.5778 0.6827 0.4264
Newbold, PA 0.1010 0.3075 0.9431 0.8463 0.0994 0.2601 0.9559 0.8900 0.1037 0.6364 0.6330 0.3841

Note. All model configurations and results are predecisional and for official use only. Boldface indicates best results.
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interaction of Coriolis forcing and the cross‐channel pressure gradient (Aristizábal & Chant, 2014; Garvine
et al., 1992).

In order to see the effects of streamflow on the water levels, two different scenarios with two different
streamflow time series are run: (i) Hurricane Isabel with actual streamflows and (ii) Hurricane Isabel with
double streamflows from Delaware River. Then, the water level differences between these two scenarios are
shown in Figure 16. At the upstream stations (Newbold, PA, and Burlington, NJ), the freshwater flux enter-
ing the tidal reach is significant relative to the contributions from tidal effects. At this river corridor, both the
freshwater component and tidal forces influence the water level. Nevertheless, at Marcus Hook, PA (3), the
maximum rate of tidal flow in the Delaware Bay proves to be very large, as compared to the freshwater

Figure 12. Water level prediction compared to the NOAA observed data during Hurricane Irene (2011). Top panels: D‐Flow FM and lower panels: HEC‐RAS. All
model configurations and results are predecisional and for official use only.
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entering the tidal reach. As such, we see diminished impacts of the freshwater in determining the total water
levels (here and downstream).

The panels in Figure 16 show that among the stations, river streamflow has the most significant effect on
water levels at upstream stations. These findings are consistent with the existing understanding of the rela-
tive importance of the river discharges on water level estimations. In addition, these results are consistent
with the changes in the magnitude of discharges. In other words, significant changes in the discharges of riv-
ers during/after storms show the significant effect on flooding for upstream areas and small changes for the
areas near the coast. This test confirms that freshwater is a principal component of the total water depth at
upstream river reaches. However, the water level in the bay is dependent on the tidal effects.

It is worth mentioning that in reality, lots of the peak water level events do not coincide with hurricane
events. The discharges in Delaware River at Trenton are in the range of 113.3–1132.7, 84.6–1415.8, and
84.6–4247.5 m3 s−1 for Hurricanes Sandy, Isabel, and Irene, respectively, while historical peak value from
1982 to 2020 is approximately 6,800 m3 s−1. However, since one of our main goals was to achieve accurate
water level from the combined storm tide and freshwater inputs (compound flooding) via an accurate
numerical framework, we compared our model numerical results with actual observations during extreme
storms. These results indicate the strengths of the proposed modeling approach for simulations of flooding
during the most extreme storms, including for use in future operational forecasting systems.

5. Summary and Conclusions

This paper demonstrated one‐way coupling between NOAA's freshwater model (NWM) and a coupled
wave/ocean model (WW3/ADCIRC) at the DRB using different inland hydraulic/hydrodynamic models
(i.e., HEC‐RAS and D‐Flow FM) to determine the most appropriate modeling system (NWM/D‐FLOW
FM/ADCIRC/WW3 or NWM/HEC‐RAS/ADCIRC/WW3). First, the modeling frameworks were verified
by performing tidal analysis. The spatial variability of roughness was optimized, and the accuracy of

Figure 13. Wind forcing comparison for Super Storm Sandy (2012) at Ship John Shoal, NJ. All model configurations
and results are predecisional and for official use only.

Table 6
Statistics for Hurricane Irene (2011) Water Levels at Different Stations Using Different Models

Stations

2D/1D (D‐Flow FM model) 2D/1D (HEC‐RAS model)

Bias (m) RMSE (m) R Skill Bias (m) RMSE (m) R Skill

Ship John Shoal, NJ −0.105 0.1906 0.9649 0.8744 −0.1448 0.4946 0.6445 0.3501
Brandywine, DE −0.1409 0.1704 0.9845 0.8992 −0.1511 0.3955 0.7266 0.4325
Marcus Hook, PA −0.0662 0.2362 0.9214 0.8459 −0.1223 0.4758 0.6376 0.3604
Cape May, NJ 0.08725 0.19448 0.94278 0.79448 −0.0048 0.3610 0.7160 0.5021

Note. All model configurations and results are predecisional and for official use only. Boldface indicates best results.
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Figure 14. Water level (m) prediction comparison with NOAA observed data during Super Storm Sandy (2012) for different wind products (Top: GFS, middle:
CFSR, bottom: HWRF). All model configurations and results are predecisional and for official use only.

Table 7
Statistics for Hurricane Sandy (2012) Water Levels With Different Wind Products

Storm
Wind
product

Ship John Shoal, NJ Newbold, PA

Bias (m) RMSE (m) R Skill Bias (m) RMSE (m) R Skill

Sandy GFS −0.1699 0.2769 0.9426 0.8207 −0.0098 0.4351 0.8845 0.7316
CFSR −0.2280 0.2761 0.9720 0.8260 −0.0347 0.3435 0.9283 0.8360
HWRF −0.2053 0.2358 0.9842 0.8683 −0.0989 0.2789 0.9627 0.8985

Note. All model configurations and results are predecisional and for official use only. Boldface indicates best results.

10.1029/2019JC015822Journal of Geophysical Research: Oceans

BAKHTYAR ET AL. 24 of 29



Figure 15. Cross‐section discharges at different locations. 1–7, from upstream to the bay, according to panel (a): 1–4 cross sections in 1D and 5–7 cross sections in
2D domains. All model configurations and results are predecisional and for official use only.
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topo/bathymetry was tested. The characteristics of tidal dynamics were well captured by the D‐Flow FM.
Then, modeling system was validated for the cases of Hurricane Isabel (2003), Hurricane Irene (2011),
and Super Storm Sandy (2012), and numerical results were compared to CO‐OPS observational data.

In order to investigate flooding in tributaries, a 1D model was applied to the river/tributaries and linked to
the 2Dmodel for the estuary and ocean, with the system running as a single model (in 1D/2D coupling). The
results showed that the 1D/2D hydrodynamic coupling is robust and the D‐Flow FM model is accurate for
water level and tidal predictions for all three storms, both inside the bay and tributaries. Water levels were
generally accurate, including the phases and peak magnitude and time. Simulation results using HEC‐RAS
showed that peak water level predictions were generally in good agreement with observations; however,
time of occurrence was not well predicted. Therefore, we may conclude that D‐Flow FM is the better model.

A sensitivity analysis has been carried out to evaluate the effects of stream discharge and atmospheric for-
cing on the model performance. The analysis revealed that hydrodynamic predictions are dependent on
the stream discharge, especially in the upstream regions. In addition, the numerical results confirmed that
the wind velocities and air pressure are very important for predicting accurate water levels. Better quality
wind products can further improve the numerical estimations of water level.

The findings of this work show that using NWM/D‐Flow FM/ADCIRC/WW3 modeling system has advan-
tages over 1D river hydraulic models, particularly during the storm events. Simulations show that water level
predictions depend on a precise representation of both river inflows and elevated sea levels. These results
indicate the strengths of the proposed modeling approach for simulations of flooding during the most
extreme storms, including for use in future operational forecasting systems. These models can be implemen-
ted for a river, estuary, or a coastal zone to achieve accurate water level from the combined storm tide and

Figure 16. Water level differences (2Q‐Q, Q is the NWM streamflow) upstream in Delaware River (1) Newbold, PA;
(2) Burlington, NJ; and (3) Marcus Hook, PA. The upper left panel shows the locations of selected stations in Delaware
River. All model configurations and results are predecisional and for official use only.
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freshwater inputs in both 1D and 2D. These models have parallel capabilities that significantly reduce com-
putational time. In the future, we will pursue the fully two‐way coupled NWM/D‐Flow FM/ADCIRC/WW3
model that we are currently developing.

Although a 3Dmodeling is not necessary for flood forecasts, literature highlights that the lateral circulation,
solved only by a 3Dmodel, affects the estuarine water exchange and the resulting estuarine outflow (e.g., Du
et al., 2018; Xiao et al., 2019). The classification of the vertical stratification in the transitional zone using the
Fischer's flow ratio or the gradient Richardson number working with 3D setting could be beneficial. As a
part of the broader inland‐coastal coupling and modeling capabilities, we are working with ROMS
(Shchepetkin & McWilliams, 2005), FVCOM (Qi et al., 2009), and Semi‐Implicit Cross‐scale Hydroscience
Integrated System Model (SCHISM) (Zhang et al., 2016) communities for extending this framework to cou-
ple NWM with 3D coastal ocean models. We are also working with ADCIRC developers to include barocli-
nicity effects in our inundation calculation by vertically integrating water density from global ocean models
and include it as an extra forcing term.

Abbreviations

ADCIRC ADvanced CIRCulation model
CFSR Climate Forecast System Reanalysis
CoNED Coastal National Elevation Database
CONUS CONtinental United States
CO‐OPS Center for Operational Oceanographic Products and Services
DRB Delaware River Basin
DTM digital terrain model
ESMF Earth System Modeling Framework
ESTOFS Extratropical Surge and Tide Operational Forecast System
FEMA Federal Emergency Management Agency
FVCOM The Unstructured Grid Finite Volume Community Ocean Model
GFS Global Forecast System
HPC high‐performance computing
HWRF Hurricane Weather Research and Forecasting
NAVD88 North American Vertical Datum 1988
NCAR National Center for Atmospheric Research
NEMS NOAA Environmental Modeling System
NHD National Hydrography Dataset
NLCD National Land Cover Database
NOAA National Oceanic and Atmospheric Administration
NOMADS NOAA Operational Model Archive and Distribution System
NWM National Water Model
NWS National Weather Service
RMSE root mean square error
ROMS Regional Oceanic Modeling System
SCHISM Semi‐Implicit Cross-scale Hydroscience Integrated System Model
TCs tropical cyclones
TIN triangular irregular network
USACE U.S. Army Corps of Engineers
USGS U.S. Geological Survey
WGS84 World Geodetic System 1984
WRF Weather Research and Forecasting
WW3 WAVEWATCH III model

Data Availability Statement

CFSR data are provided by the National Center for Atmospheric Research (NCAR), from their website at
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr. GFS data are
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provided by the NOAA National Climatic Data Center (NCDC), from their website at https://www.ncdc.
noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs.
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